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COMMENT 

The rotating oscillator 
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Department of Physics, University of Hull, Hull HU6 7RX, UK 

Received 1 July 1986, in final form 21 August 1986 

Abstract. Methods recently devised for anharmonic oscillator calculations are used to 
investigate a longstanding problem for the rotating displaced oscillator. 

The rotating displaced oscillator problem, with the Schrodinger equation 

and with +(O) = +(CO)  = 0 has been the subject of some dispute in the literature. Masson 
(1983a) reviewed the history of the problem, pointing out that some previous workers 
(Flessas 1979, Singh et a1 1972) had reached erroneous conclusions about the eigen- 
values A of equation (1). In this comment we point out that all the workers concerned 
(including Masson) have used a formalism based on a three-term recurrence relation. 
This is what causes the problems, as recent work on the anharmonic oscillator has 
shown (Killingbeck 1986). 

To simplify the formulae we still set +(O) = +(CO)  = O  but treat the more general 
Schrodinger equation 

- D 2 + + / ( / + l ) r - 2 + +  V,r++ V 2 r 2 + =  E+. (2) 

To convert (2) to (1) requires the special choices 

A + +  1 E=--- -1 v, = -2 v, = 7 
2 a  a 4 a 2 '  

Using the ansatz 
a 

$ =  r'+' exp(-cur-$r2) 1 A(n) r "  
0 

(3)  

(4) 

in (2) leads to the recurrence relation 

( n  +2)(  n +2/+3)A( n + 2) 

=(2n + 2 / + 4 ) a A ( n  + 1)+[(2n + 2 / + 3 )  - a 2 -  E]A(n)  

+ ( VI - 2 ap )A( n + 1 ) + ( V, - /3 2 ,  A( n - 2). ( 5 )  

What previous workers have done is equivalent to choosing a and p so as to remove 
the last two terms on the right-hand side of the recurrence relation (Singh et a1 1978, 
1982, Flessas 1979, Masson 1983a). This choice seems obvious. It leaves only a 
three-term recurrence relation, which is amenable to continued fraction techniques or 
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to tridiagonal matrix eigenvalue techniques, and it also gives the wavefunction the 
correct asymptotic form at large r values. However, recent microcomputer experiments 
(Killingbeck 1986) show that for anharmonic oscillator problems the use of three-term 
recurrence relations can lead to false eigenvalues. The results reported here show that 
this is also true for the rotating displaced oscillator problem. Thus it is not surprising 
that Flessas (1979) and Singh et a1 (1978, 1982) reached erroneous conclusions, while 
Masson (1983a) only managed to obtain information about the eigenvalues after a 
lengthy analysis which involved analytic continuation and the use of a modified type 
of approximant for continued fractions. 

Our computational approach is very simple. For the case V ,  = -2 V,  with V, > 0 
we set 

p = a  CY = R V l / 2 P  = -RP.  (6) 

The choice R = -1  corresponds to that made by the previous works cited. We set 
n = - 1  in ( 5 ) ,  with A(0) = 1 and all other A ( n )  initially zero. Repeated application of 
( 5 )  then gives A( l ) ,  A(2), etc, for any proposed trial energy E and for a given R value. 
Varying E until A( N) is zero for some large integer N (typically around 50) yields a 
set of eigenvalues. As N is increased these eigenvalues quickly tend to limiting 
values, so that we obtain a set of eigenvalues which (for a given potential) depend on 
R. Speedy algorithms for carrying out such computations on a microcomputer were 
described by Killingbeck (1989,  who also showed how to obtain expectation values 
directly along with the energies. Killingbeck (1985) showed that the simple procedure 
described above is equivalent to the Hill determinant method, which is traditionally 
presented in a more complicated form. 

Table 1 shows some typical results, for the case V, = 25, V, = -50 and at R = 3. 
These results remain independent of R down to R - 1.5, where the convergence (as 
N + 03) becomes very slow. For smaller R, including the value R = -1 ,  the energy 
eigenvalues are again R independent but are different from the values at R > 1.5. The 
same kind of analysis which was recently devised for anharmonic oscillator problems 
(Killingbeck 1986, Znojil 1986) shows that the energy values at R = -1, although 
incorrect for the potential in equation (2), are correct energies for the partner potential 
which has the sign of VI reversed. This suggests that previous workers who made the 
implicit choice R = -1 were unwittingly drawing conclusions about this partner poten- 
tial rather than the true potential. 

Table 1. Results for the case V ,  = 25, V, = -50, with R = 3 t  

I E ( r )  s 

0 -19.925057 1.013 1863 0.3078 
0 -9.416 9704 1.077 8002 0.5164 
0 1.982 004 1.196 5864 0.6346 
1 -17.461758 1.108 5977 0.2910 
1 -5.744 0818 1.204 91 86 0.4906 
1 6.752 8312 1.3196155 0.6108 
2 -13.743654 1.207 0577 0.2806 
2 -1.152 7636 1.309 8194 0.4754 
2 12.065 527 1.418 9721 0.5969 

t The E,, values are -20.00, -17.69 and -13.98. 
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The virial theorem 

2 E = 3 VI( r )  + 4 V,( r 2 )  (7) 

allows ( r 2 )  to be calculated when E and ( r )  are known, so that the R M S  width 6 of 
the wavefunction can be calculated from the formula 6 ’ = ( r 2 ) - ( r ) * .  S is shown in 
table 1 and the results show that for V2=25 the ground-state wavefunction is fairly 
well localised around the minimum of the potential. A fair estimate of the ground-state 
energy should thus be obtainable from the harmonic oscillator approximation: 

where ro is the r value at which the potential V(r) in equation (2)  has a minimum 
(recalling that we set V, = - V2). Table 1 gives the Eo values as calculated numerically 
using (8). 

The numerical approach described in this comment will clearly work for arbitrary 
values of V, and V, (with Vr> 0), although we have used it here to throw light on a 
problem in the theory of the rotating oscillator (with VI = - V,). As a practical means 
of computing energy levels for the rotating oscillator our method is computationally 
simple and speedy; although Masson (1983b) showed that a perturbation approach 
using the Vlr term in the potential as a perturbation should be formally possible, it 
seems that the calculation of the energy perturbation series is difficult; the hypervirial 
perturbation approach (Killingbeck 1985a, b, c) leads to equations which d o  not appear 
to be solvable. The problem appears to be due  to the boundary condition at r = 0; for 
a one-dimensional oscillator with the perturbation Ax and boundaries at x = *CO the 
hypervirial method works satisfactorily. 

The choice V2=25 in (2)  corresponds to the choice a =0.1 in (1) .  Froman et a1 
(1980) gave some eigenvalues for (1) at 1 = O  and 1,  a =0.1 ,  calculated by a finite 
difference method. When the conversion formula (3) is used our energies agree with 
theirs to the few digits which they quote. For the case 1 = 0, shifting the origin to r = 1 
in equation (1) apparently yields a simple harmonic oscillator problem with the 
traditional spectrum. However, the unorthodox asymmetric boundary conditions 
+(-1) = +(+CO) = 0 are required and this changes the eigenvalues, as noted by Froman 
et a1 (1980). For example, the shift from -20 to -19.925 057 shown in table 1 is due 
to this effect. When V, is zero in equation (2)  the associated three-dimensional problem 
becomes separable in Cartesian coordinates and  yields energy levels with a high 
degeneracy which can be explained in terms of the SU3 dynamical symmetry group 
(Killingbeck 1975). However, for VI = 0 exact analytic solutions are not possible and 
an  approach using Cartesian coordinates becomes very complicated. Even for a two- 
dimensional oscillator with the perturbing potential A ( x 4 +  y4) + Bx2y2 explicitly writ- 
ten in terms of Cartesian coordinates it is easier to use a radial equation approach to 
obtain accurate eigenvalues for the special case B = 2A (Killingbeck and  Jones 1986). 
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